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Abstract

First, some Green type potentials are introduced in the upper half-plane, which
depend on a functional parameter (x) given on (0, +o0) and can have any
mass density near the finite points of the real axis. These potentials possess a
minimality property in the sense that they coincide with the ordinary Green
potentials in the upper half-plane after application of some generalization of
Liouville’s fractional integration. Then, the Riesz type descriptive
representations of some Nevanlinna-Djrbashian type classes of functions delta-
subharmonic in the half-plane and possessing there bounded Tsuji
characteristics are established, where the new potentials participate and an
analogue of the Stieltjes inversion formula is true.

1. Introduction

This paper is devoted to the descriptive Riesz type representations of
some classes of functions delta-subharmonic in the upper half-plane

G" = {z: Imz > 0} and possessing there bounded Tsuji characteristics.
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These classes and their representations, in a sense, are similar to those
investigated by Djrbashian in the unit disc of the complex plane [1] (see
also [2, 5]). Besides, the representations of this paper differ from those of
[8], though as those of [8], they can have any mass density near the finite
points of the real axis. The main difference is that the representations of
this paper posses a minimality property, which is revealed by application
of the operator

+0o0
Lof(z) = j' f(z +it)dolt), = e G, (1.1)
0
becoming the Liouville fractional integration when o(t)=¢*/T'(1+ o)

(oo > 0). It is easy to see that the Djrbashian kernel

dt
1,(t)

Cy(2) = Iomeitz I,() = j ;we*txdm(x), (1.2)

is transferred by L, to the ordinary Cauchy kernel, i.e.,

L,Cy,(2) = —Lzz =Cy(2), zeG*, (1.3)
for “good enough” functions w(x). Besides, C,(2) = (—iz)'™® for w(t) = t*
(o > 0). Note that, being an obvious generalization of the ordinary
Cauchy kernel in the one-dimensional case, the w-kernel (1.2) was first
used in [9], where it was constructed in the multidimensional case of tube
domains.
Everywhere below, we assume that (x) is a continuously
differentiable function in some interval [0, A] c (0, +), such that
®(0) = 0, o(x) = o(A) (A < x < +»), 0'(x) > 0(0 < x < A), and

A
.[0 m(x)% <+,

In first four sections, if this paper, some Green type potentials in the

upper half-plane, depending on the functional parameter o(x)(0 < x < +%)

are introduced and investigated. In difference to those of [8], these
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potentials possess a minimality property in the sense that, they coincide
with the ordinary Green potentials in the upper half-plane after

application of the operator L,. Then, in two subsequent sections, the

Riesz type descriptive representations of some Nevanlinna-Djrbashian
type classes of functions delta-subharmonic in the half-plane and
possessing there bounded Tsuji characteristics are found, where the new
potentials participate and an analogue of the Stieltjes inversion formula

is true.
2. Blaschke Type Factors

2.1. Assuming that { = &+in e G* is a fixed point, for Imz > n
introduce the Blaschke type factors

by (2, §) = exp {— J;[Cm(z —G+it)+ Cy(z—C + it)]o;(t)dt}. 2.1)

It is easy to see that

by (2, £) = by(2, §)exp{- V, (2, O)},

where b, (z, ¢) is the Blaschke factor introduced in [8] and
2n . n -
V(2 ©) = - j Coz - C +it)olt)dt + I C,(z - C—it)olt)dt, (2.2)
n 0

is a holomorphic function in G*. Besides, it is not difficult to verify that

the following formula is true for the ordinary Blaschke factor:

z-C| _ n 1 _ 1
z—E‘_ Re.‘.o{t—i(z—f;) t+i(z_z)}dt. (2.3)

First, we prove the following lemma:

log|by (2, §)| = log

Lemma 2.1. If ¢ = &£+ in € G' is a fixed point, then

bo(2, €) = by(z, Q) exp {- J (2, Q)}, ze G, (2.4)
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where
1 +00
Tolz €)= = j_ C,(z - w)L,, log|by (u, ©)|du, 2.5)

is a function holomorphic in G*.

Proof. Using formula (2.3), one can verify that for any u € (—oo, +)

and ¢t > 0,

lloglbo (u + it, C)|| = Rejn do = jn rtids ()

no+t+i(u-¢§) (o + )% + (u-E)

Hence, for any ¢ > 0,

1 +o0
~ | oglbo e + i, €)|du

_ (" de S tt J‘*“’ du
T oo (54 8)? 4 (- E)
n+t 7\
I I when n <t < +oo,
n+t © 32 + (u &)2

= n+t }\‘
J J J IR, when 0 <t < n,
n+t o A7 4 (u £)

and

when n <t < +oo, @)

L[ togl o+ it C)idu = 2,
TJ o 8% ’ 2, when 0 <t <n.

Further, using formulas (2.5), (2.7), and the estimate (3.15) of [7], we

conclude that for any z = x +iy € G" and § € (0, 1)

oz 0= [ 16y (= - wldu| " loglbo(a + it ) da)

M s [+ d
My, f | u|1 - I |oglbo ( + it, C)||do(t)
o o

T
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M
Y, 0
<2 =5

S {nj.]:wdm(t) + J.; tdm(t)} < M)y so(A)n, (2.8)

where M ; s > 0 is a constant depending only on y and §, and it is

obvious that the integrand in J,(z, ) has an independent of z € G*

integrable majorant, provided y > 0 does not approach zero. Hence, the

function (2, ¢) is holomorphic in G*. Besides, by the Fubini theorem,

A 40
To(z €)= [ “dolt) - [ Colz - w)loglbolu + it, O)ldu

A
= [ A4z ¢ 0)dad)
0
where the inner integral is absolutely convergent. Therefore, by (2.6),

Az, ¢ t) = —J._nn dc%'[j: C,(z—u)Re {m}du,

provided o # t. Now, calculating the integral

K, (z,¢t) = %Ij:Cw(z -u)Re {m}du
= %J‘:;OC@(Z +u)Re {m}du

1 +00 1 1
B %J.,w Colz + u){c+t+i(u+ E) * c+t—i(u+ é';)}du’
we obviously get

1 (™ Cyulz+u)du 1 (*° Cyulz+udu

Koz 60 =5 ) wLevio 8] 2m)wu-Le—icrdl

Besides, it follows from the estimate (3.2) of [7] that for any fixed z € G*,

the function C,(z +w) belongs to the Hardy H2 in G*. Hence by

Cauchy’s formula,
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C,(z-¢+i(c+1)), when 6+t > 0,

Ko)(z’ C, t) = {

- Cy(z-¢&-i(oc+1)), when ¢+t < 0.

Thus,

(2 §) = j_“ndo [ :r Colz — £ + i(o + 1)) dot)
n (-o)* _
- j do j Co(z - & — i(c + t)dolt)
-n 0

_ j;ch;ow(z — &+ i(o + 1) dolt)

o dof Ty -t + (o + O)dolt)
JonJo
0

[ dao[ ",z -e-i(o+1)delr)
Jon Jo

" do [ e -2 vilo + )l
o —n o

Therefore, using formula (1.3) and integrating by parts, we get
n _
~Jolz ) = [ '[Colz T~ i) + Colz ~ L+ imar
0
n n . .
- j { j Co(z— & +if - w)dc} dot)
0 t
- j ”U”cm(z e+ ic)dc}dm(t)
0 t

_ j;[co(z —C - i)+ Coz - L +ir)]dr

_ I ”{ ;_t Cy(z—¢- ik)dk}dw(t)

0
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0
_ J’n dr 3 J’n dr
oT-iz-C) Jor+i(z-0)

- j "0z - ¢+ it)olt)dt - InCw(z _T—it)elt)dt
0 0

_ I ”{ On_t Co(z— &+ ik)d}»}dm(t)

—log by(z, ¢) + log l;m(z, ).
Hence, the desired representation (2.4) holds.

Also, the following theorem on the properties of the factors g@ (2, ) is
true:

Theorem 2.1. For any fixed { = & +in € G*, the function gw(z, ¢) is
holomorphic in G*, where it has a unique, first order zero at the point
z=2C.

Proof. If ¢ = &+ in € G* is fixed and Im z > p for some p > 0, then
by (1.2),

|Colz —C+it) < Cui(y —m +1¢) < Cy(ip) < +0, when n <t <2n,
|Co(z = € —it)| < Cyli(y + 1 —1)) < Cy(ip) < +o, when 0 <t <.

Thus, the integrands in (2.1), which are holomorphic in G*, have
independent of z(Imz > p), integrable majorants. Consequently, the

function V(z, ) is holomorphic in any half-plane Im z > p, and hence
in the whole G™.

2.2. Below, we study some properties of the Blaschke type factor
gw (2, €), which are revealed by application of the operator L, of (1.1). To

this end, we shall often use the representations of 10g|gw(2, ¢)| given in

the next two lemmas.



8 ARMEN JERBASHIAN and JOEL RESTREPO

Lemma 2.2. If { = £ +in € G* is a fixed point, then the function L,
log|l;m(z, )| is harmonic everywhere in the finite complex plane, except the
straight line closed interval [(, (] with endpoints { and €. Besides, the

following representations are true:

L, loglby (2, €)| = - Re J’;M ~ ReJ-n o(t)dt

t—i(z-¢) 0t+i(z-0)
N oo -ftf) =
~ Re '[ e zell 2.9)

Proof. It suffices to prove only the representations (2.9), since they
easily imply the required harmonicity. For y = Im z > n, the first line of

(2.9) follows from formulas (1.1), (1.3), (2.1), and (2.2), due to absolute
convergence of the integrals, and this representation is true for any

z ¢ [¢, C] by the uniqueness of harmonic function. The second line of

(2.9) follows from the first one by some simple change of variables.

Lemma 2.3. Forany { =&+ine G and z = x +iy ¢ [§, C],

- 2 )2 42
L, loglb,(z, ©)| = —2ij“[ s ':Ex ;)2 ; d og ol 0di, 210
Y X — - Yy

L, log|b, (2, ©)| = I ; log|bo (2, € — io)|do(o). 2.11)

Proof. Formula (2.10) easily follows from the first line of (2.9).
Further, integrating by parts from the second line of (2.9), we get

L, log|gw(z, o) = Jnn o(n - [f))d log[t + i(z - £)]
- j :1og[t iz - O)o/(n - £)dt

- .[0 log[t +i(z — &)]w'(n + t)dt.
-

Replacing ¢ — —¢ in the last integral, we come to (2.11).
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2.3. Observe that by the representation (2.10)
L, 10g|gm(x, =0, -—ow<x <40, x =& (2.12)

Besides, if |z — €| 2 1, then the integrand in (2.10) is nonnegative. Hence,

- <0, ze G,
L(D loglbw(z’ C_y)l
>0, ze G~ ={z:Imz < 0},

when |z — § > n. For a further study of the function L log|gw(z, ¢)|, the

well-known properties of the Cauchy type integrals (see, e.g., [3], Chapter I)
are to be used. Indeed, by formula (2.9), it easily follows that

L, 10g|5m(i2 +& ) =2rIm®y(2), z¢[-n, ) (2.13)

where

_ 1 o(n - [t)
@m(z)_% iz dt, (2.14)

i.e., is a Cauchy type integral. Hence,
Ly, 10g)by(~iz + & )| = — L, loglb,(iz + & ¢)|, zeC. (2.15)

Obviously, the function ®,(z) is holomorphic everywhere in the
finite complex plane C, except the interval [-n, n]. Further, w(x) € Lip;
in [0, A], due to the continuous differentiability of o(x). Consequently,

the following statements are true:

(a) The Cauchy type integral

1 (" on-)
@ =— | ——dt,
o(%) 2mid .y t-x
in the sense of its principal value, is a continuous function on [-n, n].

(b) At any point x € (—n, n), the following limits exist and are finite:

lim D, (2) = DS (x), lim @ (z) = Oy (x),

z—x,zeG z—x,zeG~
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besides,
D (x) - Dy(x) = on - |x]), D (x) + Dy(x) = 20, (x).

(c) For any A € (0, 1), the limits @ (x) and ®_(x) are continuous

functions of the class Lip; in the interval (-7, n).
(d) @, (z) is continuous at the points z = +n.

Using these properties of ®,(z), we prove the following statement:
Theorem 2.2. For any fixed { = & +in e G*.

(i) The function L log|l;m(z, )| is continuous in the closed complex
plane C = C U {w}, is harmonic everywhere in the finite complex plane C,
except the closed straight line interval [C, ] with endpoints ¢ and C, is

subharmonic in the upper half-plane G* and superharmonic in the lower

half-plane G~. Besides,

~ <0, zeG",
L, loglb, (2, C)| (2.16)

>0, ze G
(1) The following equality is true:
L, 10g|l;m(x, ) =0, —oo<x < +om. (2.17)
(11) The following equality is true:

min L, log|b, (2, ¢)| = 2] s —x oY) g {=t+ine G+ (2.18)

X X
zeG+

Proof. (i1) By (2.13) and the properties of the Cauchy type integral
(2.14), the function L, log|g®(2, ¢)| is continuous everywhere in C and

vanishes at oo. So, this function is continuous in the closed complex
plane. The equality (2.17) follows from (2.12).



RIESZ TYPE MINIMAL OMEGA-REPRESENTATIONS ... 11

(i) The function L, log|l;m(z, ¢)| is harmonic everywhere, except

[¢, C]. Therefore, it suffices to prove that for any s e [(, (] and any

small enough number p,

1 27 ~ 9 ~ 2 0’ S € (a’ C_y]’

%J. L, log|b,(s + pe'”, C)|d9 — L, log|b,(s, ¢)| 3
0 <0, selg8).

Then, the inequalities (2.16) follow by the maximum principle of
subharmonic functions in G* and minimum principle of superharmonic

functions in G~. For proving (2.16), observe that by (2.15) and (2.17) for
p >0,

1 21 ~ . ~
3 | Lo Toglhu (24 pe®, )] - L, logh, (& 0)| = 0.
Further, suppose 0 < h < and 0 < p < max {h, 1 — h}. Then, by (2.9),

1 21 ~ . .
—nj'O L, loglb, (& + ih + pei®, £)|d9

_Re_JZ“ I _om-jf)

nt—h+iped

- ke[ otn- ||>[2n | pﬁ?-hn)dt

Calculating the inner integral by residues, we get

1

1 ds [T Eohee
21 Jig=p s[s — it — h)]
lsl=p [ ( ] ’ [t - A < p.
Thus,
1 f2n ~ _ i9 B J‘h‘P J‘” o(n - |f)
5= | Lo loglBu (& + ih + pe ,c>|ds—( I POV ey bl

Consequently, if 0 < A < n and 0 < p < max {h, n — h}, then
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1 (2 ~ : ; - :
= jo L, loglb, (& + ih + pe'®, ©)|d8 - L,, log|b, (& + ih, £)|d9

_Jh+Pm(n—|t|)dt :_J‘Pm(n—x—h)dx_J‘O g)(n—|x+h|)dx
h-p t—h 0 x - x

:J‘pm(n+x—h)—m(n—x—h)dx>0
0 x

since o(x) is strictly increasing. For h = 1, we assume that 0 < p <

and get
1 2n ~ .
5 L, log|b, (& + pet®, £)|d9
2n
_ Re_ J‘ 25 _[ _om-f) ~a
n t+ipetd —
n(1 ds
[ o
—n(% s)=p sls — i(t = )] (-l
where
A ds e el
27 J|s|=p 8[s — i(t — )] 0, k n—-t <p.
Thus,

1 i =P o(n — |t|)
L, log|b d9 = = —d
I oglby, (G + pe'®, ¢)| j &

and finally, for 0 < p < 1,

1 2n ~ . ~
3 | Lo ol (€ + pet®, €)d5 - L, loglh, €. ©)
_J'Tl (’)(n - |t|) dt = Ipm(x) dx > 0.
n-p t-M 0o x

The inequality in the second line of (2.16) follows from the already proved
first line and (2.15).
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(i1l)) The function L, log|l;m(z, O|(¢=¢&+ineG") is nonpositive,

continuous in E, and harmonic in the domain G+ \ [¢, ¢]. Besides,

(2.17) is true. Hence, this function takes its minimal value on the closed
interval [, ¢]. Namely,

' N - n on -t
mlg Lw 10glbw(z’ C)l - Lw IOglbw(C’ C)l = _'[ (T?—tl |) dt

zeG™* 1
n _
_ 9 j n-x o),
02n—-x x
Below, we prove one more useful lemma:
Lemma 2.4. For any fixed { = £ +in e G*,
+00 -
lim L, loglb,(x + iy, £)|dx = 0. (2.19)
y—=0J
Proof. By formula (2.9),
~ . n t—y
L, loglb,(x + iy, §)| = I 5 5 o(n - [f)dt.
(x - &) +(t-y)

Hence, changing the order of integration, we get

" L loglB,(x + iy, C)dx = Inn“’(” ~Jt])dt j +°°( };)gl Szt ;
. i L -

= n_[_nn o(n —[f))sign(t - y)dt = Dy,(n, ¥).

For calculating the last integral, observe that if |y| > n, then

D, (n, y) = —2n(sign y)j; o(x)dx,

and if |y| < n, then it is easy to verify that

D,(n, y) = —Zn(signy)“‘;_ym(x)dx.
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Thus,
. n
. N - 2n(sign y)jo o(x)dx, ly] =,
L, log|b,(x + iy, §)|dt = N
- - 2n(sign y)'[ o(x)dx, ly] <.
Ny
(2.20)

Hence (2.19) follows.
3. Green Type Potentials

The theorems of this section relate to the convergence and some
properties of the Green type potentials constructed by means of Blaschke

type factors of the previous section.
3.1. First, we prove the following theorem:
Theorem 3.1. If a nonnegative Borel measure v((), given in the half-

plane G™, satisfies the condition

I j " ( j Olmgoo(t)dt]du(q) <+, (3.1)

then the Green type potential

Pofa) = [, toelbu . )lav(c). (32)

is convergent in G* and represents there a subharmonic function with the

Riesz measure v().

Proof. In any half-plane G; ={z:Imz >p} with 0 <p <A, we

define a Green type potential as the sum

13(1)(2) = PO(Z9 P)+ Uo)(z’ p)’ zeG,

. (3.3)
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where

Ry(e) = | j log

Hauc) = [[ Jodtote D). )

is an ordinary Green potential, and

_ 7 gm(za C)
Uo(erp) = [ 1. Yool Qlau(c) + [ [ tog 2 5au(c)

= UW(z, p)+ UP(z, p). (3.5)

The Green type potential ﬁm (2) is convergent in G* in the sense that for
any p € (0, A), the ordinary Green potential Py(z, p) converges in G*
and U,(z, p) is a harmonic function in G; . For verifying this, we first

prove that if the condition (3.1) is fulfilled, then for any p € (0, A),
IJ Im Cdv(§) < +0, & =& +in.
Gy

Indeed, if 0 < p < A, then by (3.1),

| I U m@dtjdv(c)
([0 D [0}
) ”GXUOACO(t)dt *II"’“)dtjdv«:H”G INGE U m(t)dtjdu(c)

= [[ ;[0 Caln =200+ o avtd

=6, 5 T,

where C; 9 3 4 > 0 are some constants. Now, observe that the already

proved relation (3.5) provides the convergence of the ordinary Green
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potential in (3.4) for any p € (0, A), since it is well-known that its

convergence is guaranteed even by the weaker Blaschke condition

II Im §2 dv(§) < +oo.
Gl

Further, by Theorem 2.1, the integrand log|l;m(z, ¢)| in Ug)(z, p) is
harmonic in G;. Besides, assuming that z =x+1iy, { =& +in, and

y < p1, where p; > p 1is fixed, one can be convinced that by (2.1) and
(1.3),

Josfiz. 0] = [ Cte - i)+ Cote - - ot
< [ 1Cu(ily =n+ 1)+ Colily + n - )} olt)as

< 20, (i(p1 — )| wlt)at,

and hence,

e o=,

< 2C,(i(p; - p))IIG+\G+ U. i o)(t)dtj dv(C) < +oo.

0

log|by (2, ¢)||dv(C)

+
P

Thus, the modulus of the integrand in Ug)(z, p), which is a harmonic

function in Gg , possesses an independent of z e G;l, integrable

majorant. Hence, Ug)(z, p) is a harmonic function in z € G; .

For proving that U((o2)(2, p) is harmonic in the whole G*, observe

that by the representation (2.4) and (2.5)

1

og Z‘;’z: 8 =-Red,(z,¢), zeG",
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where J,(z, ¢) is a holomorphic function in G*. Besides, by (2.8) for any
y>¢e>0 and & € (0, 1),

]‘4{5 5 +0o0 n Ma 8§
[Tz )] < 27558 nj dm(t)+j tdoft) | < 422 o(A)n,
e 0 0 el™

Consequently, for any y > ¢ and § € (0, 1),

M

81

oz, O)ldv(C) < 4 8’56 o(A)] | ndv(C) < +e.
e @

Thus, for any & > 0, the modulus of the integrand in UC(OZ)(Z, p), which is

a harmonic function in G; , Ppossesses an integrable majorant

independent of z € G. Consequently, Uc(uz)(z, p) is a harmonic function
in G*.
3.2. The next two theorems relate to some properties of the potential

IS(D (2), which are revealed by application of the operator L.

Theorem 3.2. If a nonnegative Borel measure v(C) given in G*
satisfies the condition (3.1), then Lmﬁw(z) IS a nonpositive, continuous,

subharmonic function in G*, and
LB, (2) = I I Lo log|b, (2, O)|dv(c), =z e G*, (3.6)

where the integral is absolutely and uniformly convergent inside G*.

Proof. Assuming that & — G* is any compact with d = min, g

Imz >0 and 0 < p < min {d /2, A} is a fixed number, we write
P& =[] iy 19800 Qav(E) + [] o190 Q)0

= PW()+ PP(2),
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and separately prove the desired statements for PO()l)(z) and PO(JQ)(Z). To
this end, it suffices to show that the integral in the right-hand side of
formula (3.6), written for Pogl)(z) and Pogz)(z), is absolutely and uniformly

convergent with respect to z € &. Then, formula (3.6) follows by Fubini’s

theorem, while the subharmonicity and the continuity of the function

L,P,(z) will hold by the same properties of L, log|b,(z, ¢)|.

For Ptgl)(z), observe that by (2.1) and (1.2) for d < y < +o and
O<n<Imf<p<d/2,

~ n 0 s(y- do
o(y-n+t) _A0
[log|b, (2, €| < 2.’.0 o)(t)dtJ.O e I.()

< 20, (id /z)j;1 o(t)dt < +o.

Hence, the desired statement follows by (3.1). Proceeding to estimation of

the integrand in Pogz)(z), where n>p and z=x +iy € &, ie, y>d >
2p, observe that by (2.4) 10g|gw(2, )| = loglby(z, )| - Red,(z, ), and
hence
|Log|by (2, Q)| < [loglbo(=, O] + w2, C))- 3.7)
Besides,
Le|loglby (2, Q|| < |Lg, loglby (2, Q|| + | Lo (2, €)» (3.8)

where by (2.18),

A
~ n-x olx) n
|L,, log|b, (2, ¢)|| < 2'[0 mox % dx < ij.o o(x)dx,

with some constant M p >0 depending solely on p. On the other hand,
from (2.5) and (2.7), it follows that
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C d +00 +00 .
[Toter = 2D [ ot " ogibo(u + it du

- 2C, (id) { j ; tdoft) + j : dm(t)},

where the last integral in the figure brackets disappears for n > A.

Hence, we conclude that
n
(2, Q)] < 2C,(id)Aa(a) < My, I o(x)dx,
0
and
n , n
Lol ol 0 < M o) ‘olx)dx = M, [ "olx)ds,

where M d,p and M (,i,p are some positive constants depending only on d
and p. By the above estimates and formulas (3.7) and (3.8), we conclude

that in Pogz)(z)
Lmll()glgw(z’ Q)” = Lw|10g|bo(2, C)” + Llecu(Z’ C)l
n
< (M, + My, + Md,p)J. o(x)dx,
0

and again the desired statement follows by (3.1).

Theorem 3.3. If a given in G* nonnegative Borel measure v(()

satisfies the condition (3.1), then

+00 ~
sup J LBy + )| dx < +on, (3.9)
y>0 ¢ -0

+00 -
lim |Lo, Py (x + iy)| dx = 0. (3.10)

y—=>+0 J —o
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Proof. Observe that in view of formulas (3.6), (2.20), and the

nonpositivity of L, log|l;m(z, ¢) in G*

+00 -
I |L,P,(x + iy)|dx
+00 ~ .
[ Tax I j " L, oglb, (x + iy, ©)]|du(c)

- J I Gt d“(‘?)f j:\Lw loglb (x + iy, ¢)||dx

_ 2nI I " [ I T?_y o)(x)dx] du(C) + 2n I '[G+\G; U; w(x)dxjdv(é)

= 2n(A(y) + B(y)).

Hence, we easily come to the relation (3.9)

+00

§11>110) » ‘Lmﬁm(x + iy)‘ dx < 47:ij+ (J; m(x)dedv(Q) < oo,

Further, it is obvious that B(y) > 0 as y — +0. As to A(y), its

integrand In o(x)dx possesses an independent of y integrable majorant
n-y

Jonco(x)dx. Therefore, denoting the characteristic function of the half-

plane G, by x,(C), we get

lim A(y) = j IGwli)njO [Xy(g).[ :_ym(x)dedu(g) - 0.

y—>+0
Remark 3.1. As we have proved, under the condition (3.2), the
function Lwﬁw(z) is subharmonic in G* and the relation (3.9) is true.
This means that Lwﬁw(z) belongs to the class M of Solomentsev [10].

On the other hand, the relation (3.10) provides the equality of Lwﬁw (2) to
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some ordinary Green potential, which possesses the minimality property,
1.e., at almost all points of the real axis, it has zero boundary limits by the
orthogonal to the real axis arcs of any circle, which is the image of a

radius under a conformal mapping of the disc |z| <1 to the half-plane

G+
4. One More Property of Green Type Potentials

In this section, we prove one more property of the Green type
potential P, (z). To this end, first we prove the following improvement of

the estimate of the kernel (1.2) given by Lemma 3.2 in [7].

Lemma 4.1. For any fixed number p > 0,

1+y

|Re Cy,(2) < M, , 7 ,

z=x+iyeG;, 4.1)
where M,,>0 is a constant depending only on p and the function
o(x).

Proof. For any x + iy € G; , integration by parts gives

_ itz dt _L eitz
@ =, G E T

+00 1 +o i

-= etz Im(t)2 dt
0= L)

_1 e e 1 e L) |

iz Io)(t) t=0 (i2)2 [Iw(t)]z t=0

1) L)y Lo®) }dt. (4.2)
" i2P do ﬁ%@? [7,0F

Observe that for 0 < ¢ < +oo,

I,() = J;we_txdw(x),



22 ARMEN JERBASHIAN and JOEL RESTREPO

. L. . . +oo

is a positive, continuous function and I,(0) = .[0 do(x) = o(A). Further,

choose a number & € (0, min{p/3,A/3}) and denote C; = 8<m<iIAl/2 o'(x)>0.
SXS

Then, for ¢t large enough,

A2 A2
I,(t) = J e ¥daw(x) > Clj e ¥y = &efts(l - eft(A/zfs)) > &efts.
5 3 l 2t

Consequently,

Cy

— e 0<t <+, (4.3)

I,()=>

where Gg >0 is some constant. Further, for any 0 <t < +wo, the

function

A —ix
() -[0 e " xdo(x)

(o) N U:e_txdm(x)} .

1s negative and continuous, and it is easy to see that for ¢ large enough

1)
[7,0)F

where C3 > 0 is some constant. Consequently,

<C t2e2t8

)

1,(t)
[1,0)F

with some constant C4 > 0. In a similar way, we come also to the

<C 1 +0)2%e, 0<t < +om, (4.4)

estimate

| Im(t) -2 I(D(t) | < C5(]_ + t)3e3t8, 0<t< 00, (45)

L,eF  [L,oOP]

where C5 > 0 is some constant.
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It follows from the representation (4.2) and the estimates (4.3), (4.4),
and (4.5) that

1
ReC,(z) = @é +Rev(z), zeGy, (4.6)

where the function

1 1 A 1 e { Io(t) Iy(t) }
¥(z) = ———— xdo(x e -2 dt,
& = P e J ot (i2)° Jo 2,01 0]

admits the estimate

+00
lv(z)| < Lo + &J- e UP=30)(1 4 t)3qr = ﬁ, z e G},
22 22 Jo |22 P

with some constants Cg 7 > 0. Hence, the desired estimate (4.1) holds by
(4.6).

Along with Lemma 4.1, we shall use the following statement on the
Green type potentials:

Theorem 4.1. If a nonnegative Borel measure v({) satisfies the
condition (3.1), then for any p > 0, the corresponding Green type potential
satisfies the condition

+00
sup‘[ | Py, (x + iy)|dx < +oo. 4.7
y>p o -0

Proof. Assuming that 0 < p/2 < A, we represent the Green type

+
p/2

integrals Py(z, p/2) and U,(z, p/2), and estimate these integrals

potential in the half-plane G in the form (3.3), i.e., as the sum of

separately. To this end, first we observe that the condition (3.1) implies
that

IIG+ Im Cdv(C) < 40, € =& +in.
P
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Therefore, by (2.7),

ys>1;;/)2 J.—oo |Po(x + iy, p/2)|dx < 2anGg/2ndu(C) <+ (£ =E+in).

Further, we represent U,(z, p/2) in G;/z as the sum of integrals

U((ol)(z, p/2) and Ug)(z, p/2), as in (3.5). Then, by (2.1) and the
estimate (4.1), we obtain that for 0 <n<p/2 and y > p

[loglo (=, 0|

< IO“{| Re C,,(z - € + it)] + [Re Cy (2 — T — it)|}oolt)dt

n 1+y—-m+t 1+y+n-—-t
<M t)dt
1J~0{(x—é)2+(y—n+t)2 +(x—é)2+(y+n—t)2}w()

n
< sz. 2y S o(t)dt,
0 (x—&)" + Mgy

where M; 5 3 > 0 are some constants. Consequently,

+EX)‘

supJ~ UW(x + iy, p/ 2)‘dx
y>p o

+00
< M, supJ.J. du(C)J. 32/dx 5 J.nco(t)dt
y>p ¢ JGNG] ), —o (¥ —&)" + Mgy~ 70

< 3%_2 j j o, ( j ;co(t)dtjdv(g) < +.

Further, by the representation (2.4),

US G p/2) =[] . Redy(z Qdu(o),
p/2

where J,(z, €) is the integral (2.5). Further, again by the estimate (4.1)
for y > p, we get
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+00
[Re J (2, C) < My lj‘ | Lo 10g|bo(;¢, 9l du
T oo |z - uf

+o0 A
-y 2T [ floglbg (u + i, O)dofe),
oo (x —u)? +y2J0

where M, > 0 is some constant. Consequently, by formula (2.7) for any

y>pandn>p/2,
+00 .
I | (x + iy, §)|dx

+0o0 dx

—o (x — u)2 + 52

IN

A +00 y
M5J dm(t)J [loglbg (u + it, ©)due 2 '[
0 —o0

27:M5{njn+ood(o(t) + j;tdm(t)} < Mgn,

where M5 g > 0 are some constants. Consequently,

Supj+w‘U&2)(x + 1y, p/2)‘dx < M7JI . Mdv(C) < +oo,
y>p J - SN

for some constant M, > 0.

5. Representations of Classes of Harmonic Functions

We start by the following theorem on representations of some

weighted classes of harmonic functions in G™.

Theorem 5.1. (1°) The class of harmonic in G* functions U(z), for

which

+o0
supj |U(x + iy)|dx < +oo, (5.1)
y>p d-o

for any p > 0 and
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+0o0
supj |L,U(x + iy)|dx < +o, (5.2)
y>0 ¢ -0

coincides with the set of functions representable in the form
1 +00
Ulz) = — j ReC,(z - t)du(t), z e G, (5.3)

where u(t) is a function of bounded variation on (-, +).

(2°) If the representation (5.3) is irue, then the following analogue of

the Stieltjes inversion formula holds:

X
() = lim j LUt +iy)dt ae. x e (=0, +0). (5.4)
y—>+0Jo

Proof. (1°) First, let us verify that if U(z) is harmonic in G, then
also L,U(z) is harmonic in G*. Indeed, U(z) is uniformly continuous in

any compact inside G*. Hence, if z = x + iy € G*, then for any number

¢ > 0, there is some § € (0, y) such that

oy . i9 €
|U(z + ic) - U(z + ic + pe™ )| < o)
for any 0 < 6 < A, provided 0 < p < 8. Consequently,
" A o
|L,U(z) = L,U(z + pe'” )| < .[ |U(z + ic) - U(z + ic + pe™ )|dw(o) < &,
0

when p > 0 is small enough. Besides, it is easy to see that

1 2n 9 1 2n A 9
—J. L,U(z + pe'”)d9 = —J. dS.[ U(z + ic + pe'” )do(c)
2n Jo 2n Jo 0
A 1 21 9
= J. dm(c)—J U(z +ic + pe'” )d9
0 2n Jo

= IOAU(Z +ic)do(c) = L,U(z).
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Now, suppose that a harmonic in G* function U(z) is such that the

relations (5.1) and (5.2) are true. Then, it is well-known (see, e.g., [6],
Lemma 1.3 on p. 48) that (5.1) implies

_ +0o0 ;
Uz) = 2 pI U(t2+zp)dt 5, 2 =x+iyeGy, (5.5)
w e -p)

for any p > 0. It follows from this representation, that for any p > 0, the

function U(z) is the real part of some function f,(z), which is

holomorphic in G; and can be written as a Laplace transform. Indeed,

U(z) = Re {% | wM}

e iz —ip 1)

1 +00 +oo . .
- Re {; j Ult + ip)dt j e”(z—lp—t)dT}
- 0

= Re {J- . eiT(Z_ip){% J. +Ooe_iTtU(t + ip)dt} d’r}
0 -0

= Re{f,(2)}, z¢eG,, (5.6)

where all integrals are absolutely and uniformly convergent inside G; .

Hence,

L,U(z) = Re{Lofy(2)}, 2 €GP,

where L(Dfp(z) is a holomorphic in G; function representable as a

Laplace transform. Indeed,

Lof,(2) = j O+°° £,z + io)do(o)

o 9 ir(z—iptic)) L [T —int .
= J do)(c)J. e p ;J. e MUt + ip)dt pdT
0 0

—00

+oo . . +o0 .
— J elT(Z_lp){I(’)T(T)I e_thU(t + lp)dt} dT,
0 -0
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where all integrals are absolutely and uniformly convergent inside G,
including I, (t) defined in (1.2). Further, the condition (5.2), which is

true for the function L,U(z) harmonic in G*, implies the representation

+0o0
LU(z) = ymcj (‘i;‘%, z=x+iyeG G.7)
—o (x —t)* +y

where p(¢) is a function of bounded variation on (-, +o). Hence, the

function L,U(z) is the real part of some Laplace transform, namely, of

the holomorphic in G* function

BRI I O —itt +
F(z) = IO e —I e du(t)rdr, zeGT,

TJ-o
and
L,U(z)=ReF(z), zeG".
By (5.6), Re F(z) = Re L,f,(2)(z € G, ) for any p > 0, and hence
F(z) = Lyf,(2)+iC,, ze Gy,
where C,, is a real constant depending on p. But for any p > 0,

lim F(iy) = lim L,f,(iy) = 0,
y—>+00

y—>+0

since the generating functions of the Laplace transforms representing
F(z) and f,(2) are bounded. Thus, C, = 0 for any p > 0.

So, for any p >0, the function L,f,(2) has a holomorphic
continuation to the whole half-plane G*, where
F(z) = Lyfy(2), zeG".

Consequently, by the uniqueness of the generating functions of Laplace

transforms (see, e.g., [11], Chapter II, Section 6),
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+00 . +00 .
%J. e du(t) = I“’T(T)I e Ut + ip)dt, 0 < T < 4o,

where the right-hand side does not depend on p > 0. Hence, for any

p>0,
leooe*iTtU(t +ip)dt = ;J.“Oe*mdu(t) 0<T<+0
T ml, (1) oo ’ ’

and coming to the Laplace transforms of these functions, by (5.6), we

conclude

fo(2) = '[ ;weﬁ(z-ip){% J' j:e_iTtU(t ; ip)dt} dr
+o0 ., . +© .
_ iT(z—ip) 1 —itt
- .[O e {n[m(’r) J:OO e du(t)}d’r

3 1 +00 +00 iT( _i —l) dT
N {fo pir(e-ip —zw@}d“(“

1[+® .
- ;I_w Cyo(z —ip —t)du(t), zeGy.

Consequently, for any p > 0,
1 +o0 . .
Ulz) = _I Re Cy(z - ip — t)du(t), = e G,
TTJ -0

and letting p — +o, we obtain the representation (5.3).

Conversely, let the representation (5.3) be true. Then, by the estimate
(4.1), it easily follows that U(z) is harmonic in G* and the relation (5.1)

is true. As to the relation (5.2), it follows by application of the operator
L, to both sides of formula (5.3), which gives (5.7).

(2°) The statement is obvious in virtue of formula (5.7).
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6. Riesz Type Representations with Minimality Property

Henceforth, we assume that U(z) is a § -subharmonic function in the

upper half-plane G*, and its Riesz associated measure v({) is minimally
decomposed in the Jordan sense, i.e., v(¢) = v,({) - v_({), where v.({)
are the positive and the negative variations of the measure v({), which
are some nonnegative Borel measures with non-overlapping supports in
G*. Two functions U(z) = U;(z) - Uy(z) and V(z) = V;(2) - V5(2), which
are & -subharmonic in a domain, are said to be equal, i.e., U(z) = V(z), if

Ui(z) + Vo(2) = Ug(2) + V;(z), everywhere in that domain.

We shall deal with the Tsuji characteristics of the form

+00 +0
Ly, £ U) = 21—7“'._ (+U) (x + iy)dx + .[y ne(t)dt, 0 <y < +m,

where a* = max {a, 0}, a = a” —a”, and
met) = [ dve©. 6 =m0,
t

Now, we introduce the o-weighted classes of & -subharmonic functions in

G, which we shall study.

Definition 6.1. A § -subharmonic in G* function U(z) is of the class

nre ., if
sup [£(y, U) + £(y, - U)] < +o, for any p e (0, A), 6.1)
y>p
and
sup [E(y’ LO)U) + E(y’ - L(;JU)] < Foo. (62)
y>0

Remark 6.1. In contrast to the theories in the unit disc of the
complex plane [1, 2, 5] based on the equilibrium relation between the

growth and the decrease Nevanlinna characteristics, such an equilibrium,
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1.e., Levin formula, is not true for all functions delta-subharmonic in the

half-plane (see Chapter 3 in [6]). Therefore, it is natural to define the
class M by the restrictions (6.1) and (6.2), which are on both growth

and decrease Tsuji characteristics, as it is done also in Chapter 4 of [6].

The following theorem gives the descriptive Riesz type representations

of the classes M :

Theorem 6.1. (1°) The class M} coincides with the set of functions

of the form
UE) = £ [ "R (Cole - 0}du®) + [ [ Togibo(e. Olav(0). = <G,

(6.3)
where u(t) is a function of bounded variation on (-, +) and

v(€) = v,() —v_(C), where v, () are nonnegative Borel measures in G,

such that

I j " ( j ;mcw(x)dx)dm(g) < +o. 6.4)

(2°) The measure p(t) in representation (6.3) is revealed by the

Stieltjes inversion formula

X
w(x) = Tim J' LU, (t +iy)dt ae. x e (-0, +0). 6.5)
y—>+0Jo

Proof. (1°) Let U(z) € M. Then by (6.1) for any p € (0, A),

J‘J‘G; (J;_p m(x)dx]dui(C) < IJG; (J; o)(x)dedvi(Q) < o0, (6.6)

where ¢ = & +in. Indeed, the first inequality is obvious. For proving the

second one, observe that for any p € (0, A),
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”Gg U; (’)(x)dxjdv+(§)
i {J.JGI+ -”G;\Gg J(J;m(x)dedVi(C)

< IJGK (JOA w(x)dx)dvi(@ + m(A)JIG+\GX ndv,(¢)

o) f o vete) < o] [ (- Bava(c) < v

A

IA

since the condition (6.1) is true for p /2 in particular.

By (6.6) and Theorem 3.1, the Green type potentials in G-, with the

measures v, ((), are convergent, and hence the function
Uo() = UG) - [ [ oglb( - ip. € - ip)du(0).
P
is harmonic in G; . Consequently, also the function

LoUo(2) = LoU(e) - [ [ Lo loglbolz ~ip. G~ ip)du(e). (6.7
[

is harmonic in G; . Besides, by the continuity of L,Uy(z) and of the
Green type potential, the function L, U(z) of the above formula is a
continuous, 8 -subharmonic function in G; , and hence in the whole G*.

Further, it is obvious that

+o0
supj |L,Up(x + iy)|dx
y>0 -0

+o0
< sup |L,U(x + iy)|dx
y>0 ¢ -0
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+00
+ supj‘
y>0 ¢ -0

-”.G” L, 10g|gm(x +1y —ip, § — ip)|dv(C)|dx
P

= A+ B,

where

A < sup[L(y, LyU) + £(y, — LyU)] < +,
y>p

by (6.2) and B < +o by the estimate (3.9). Thus,

+00
LwUO(2+ip):%j (O?;%, z=x+iye G,
oo (x — y

where p(t) is a function of bounded variation on (-, +x). Moreover, the
measure du(t) of the above representation is absolutely continuous and is

equal to L,U(t + ip)dt. For proving this, observe that for any function

f(x) continuous in (-, +®) and such that lin} flx)=0
X —> 100

lim [ f()LoUo(x + iy + ip)dx = rw f(x)du(x),

y—>+0J — -

(see, e.g., [4], Chapter I, Theorems 5.3 and 3.1(c)). Then, for any interval
[a, b] = (-, +x) introduce the sequence of functions {f,(x)};’ assuming
that f,(x)=1(a<x<b) and f,(x)=0(x ¢[a-1/n,b+1/n]) and
continuing f,,(x) to the remaining intervals of (-, +%) as a continuous,

linear function. Then, by the continuity of L,U(¢ + ip) and the relation
(3.10)

+00 +©
J ful)L,U + ip)dx = lim j £ (@) LU(x + iy + ip)dx
0 y—>+ —o0

- [ h@adu).

forany n =1, 2, .... On the other hand,

b +0 b
'[ LU(x + ip)dx = lim J' £, (X)L UCx + ip)dx = J' du(x).
a n—0 J _wn a
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Thus, du(t) = L,U(t + ip)dt. Besides, L U(t + ip) e L (-0, +0) and

o LUt +ip)
~ 2 2
©(x—-t)" +y

LmUO(z)zy;pJ. dt, z=x+iyeG,.

Consequently, by (6.7),

b, - ; —p [** LUt +i
L) [ [ ootz —ip. € —ipa) = 222 [ 720
P —® (X — +y

forany z = x + iy € G;, and
1 .. . ~ . .
3 lim y{LmU(zy) — IJ , Lo loglby(z —ip, € - Lp)|dv(§)}
Y —>+0 Gp

L ("L Ut +ip)d
_z—nj_w SU(t + ip)dt.
On the other hand, by the representation (2.10),

= lim yII Ly, 1og|by, (z — ip, € — ip)|dv(¢) = _J’J‘m Uon_pw(t)dtjdv(c),

y—>+oo

where = & + in. Thus,
L Yim L, U(y) "ot |ave) = 2 [ LU + ip)ar
3 Jim yLUGy +[ng [ ot |an) = 5[ LU+ ip)dt,

(6.8)
where all quantities are finite.

Now, observe that by the relation (3.10) and a result of Solomentsev
[10], the integrals in (6.7) taken by the components dv, ({) and dv_(¢) of

the measure dv({) are ordinary Green potentials in G., i.e., there exist

some nonnegative Borel measures dug)(c) and dv(w_)(g) with non-

overlapping supports in G , such that

[]. .- pdlQ) < oo
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and

[ 2o tostboe =in, ¢ = iplva (@) = [ [ tosltote = o, ¢ ip) )

where by(z, () = (z—¢)/(2-C) is the ordinary Blaschke factor. Note

that the measures duﬁj)(g) are independent of p, since they are the

positive and the negative variations of the Riesz measure of the function

L,U(z). Further, by a passage to the limit in the last formula, we obtain
that for any p € (0, A),

_H.Gg Uonpm(t)dtj dv,(C) = IJGg (M - p)dviE(C) < +o0. 6.9)

Inserting this equality in (6.8), we come to the Levin formula for the

function L U(z). Then, by some simple rearrangement of terms, we get

the following equilibrium relation for the Tsuji characteristics:
L dim yL UGy) + 2(p, ~LoU) = &(p, LU), 0 <p <A
2 y—>+o

Hence, by (6.2),

[ na§)© <

which implies (6.4) in virtue of (6.9).

So, the relation (6.4) is true. Consequently, the Green type potential

in (6.3) converges and the harmonic in G* function
UG) - [[  toglbo ) du(@). =z <@,

satisfies the conditions (5.1) and (5.2) of Theorem 5.1. Indeed, U(z)

satisfies (5.1) in virtue of (6.1), and the Green type potential by the
estimate (4.7). As to the condition (5.2), U(z) satisfies this condition by

(56.2), and the Green type potential by the estimate (3.9). Thus, the
considered function is of the form (5.3), and U(z) is of the form (6.3).
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Conversely, let U(z) be representable in the form (6.3). Then,

obviously, U(z) is a & -subharmonic function in G*. Further, the Green

type potential in (6.3) satisfies the condition (5.1) by (4.7) and it satisfies
the condition (5.2) by (3.9). Besides, the function

L[ Re{Cu(z - 01dute)

in (6.3), which is harmonic in G*, satisfies these conditions by Theorem

5.1. Thus, U(z) € M.

(2°) The relation (6.5) follows from (5.4) and (3.10), since
L,U(z) = yj d“—t) + JI loglby(z, C)|dv,(C), z=x+iyeGT,
o (x —t)? + y? G*

where v, ({) is a Borel measure such that its positive and negative

variations satisfy the condition
ij Im degj)(q) < oo,

Remark 6.2. In particular, the above theorem implies that the class
of those functions f(z) meromorphic in G*, for which log|f(z)| € My,

coincides with the set of functions representable in the form

B(z {ak}) i z— i zeG*
f(z) = ERTRIE {n Lﬂ C,(z — t)dult) + C}, G*, (6.10)

where p(¢) is a function of bounded variation on (-w, +) C is a real

number and {a,} c G*, {b,} ¢ G are the zeros and the poles of f(z),

which satisfy the density condition

Ima Imb,
ZI " o(t)dt < +o, > I ot)dt < +o.
k 0 n 0

R

If the above factorization of f(z) is true, the following analogue of the

Stieltjes inversion formula is valid:
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X
w(x) = lim J. L, log|f(t + iy)|dt, a.e. x e (-0, +o).
y—>+0J o

Remark 6.3. Note that a change of the integration orders in the
exponent of the factorization (6.10) and in the harmonic part of the
representation (6.3) gives a Laplace transform and the real part of a

Laplace transform.
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